我是谁?我从哪来?我要去哪?

0%

Elasticsearch诞生的本意是为了解决文本搜索太慢的问题,ES会默认将所有的输入内容当作字符串来理解,对于字段类型是keyword或者text的数据比较友好。但是如果输入的类型是数字,ES还会把数字当作字符串吗?排序问题还有范围查询问题怎么解决呢?这篇文章就简单介绍了ES对于数字类型(numeric)数据的处理,能让你大涨姿势
阅读全文 »

相比于大多数人熟悉的MySQL数据库的索引,Elasticsearch的索引机制是完全不同于MySQL的B+Tree结构。索引会被压缩放入内存用于加速搜索过程,这一点在效率上是完爆MySQL数据库的。但是Elasticsearch会对全部text字段进行索引,必然会消耗巨大的内存,为此Elasticsearch针对索引进行了深度的优化。在保证执行效率的同时,尽量缩减内存空间的占用。这篇文章就深度解析了Elasticsearch索引原理,揭开搜索的神秘面纱。
阅读全文 »

刚开始接触Elasticsearch的时候被Elasticsearch的搜索功能搞得晕头转向,每次想在Kibana里面查询某个字段的时候,查出来的结果经常不是自己想要的,然而又不知道问题出在了哪里。出现这个问题归根结底是因为对于Elasticsearch的底层索引原理以及各个查询搜索方式的不了解,在Elasticsearch中仅仅字符串相关的查询就有19个之多,如果不弄清楚查询语句的工作方式,应用可能就不会按照我们预想的方式运作。这篇文章就详细介绍了Elasticsearch的19种搜索方式及其原理,老板再也不用担心我用错搜索语句啦!
阅读全文 »

二叉树的遍历可能大家都比较熟悉了,这篇文章主要介绍了三种二叉树的遍历方法——递归、迭代和莫里斯遍历,他们各自有各自的特点。其中最重要的是莫里斯遍历,相对于前两种方法比较少见,只需要固定的空间就可以完成迭代遍历。这篇文章将会结合动图,带你了解关于树遍历的知识。
阅读全文 »

经过60多年的发展,科学家和工程师们发明了很多排序算法,有基本的插入算法,也有相对高效的归并排序算法等,他们各有各的特点,比如归并排序性能稳定、堆排序空间消耗小等等。但是这些算法也有自己的局限性比如快速排序最坏情况和冒泡算法一样,归并排序需要消耗的空间最多,插入排序平均情况的时间复杂度太高。在实际工程应用中,我们希望得到一款综合性能最好的排序算法,能够兼具最坏和最好时间复杂度(空间复杂度的优化可以靠后毕竟内存的价格是越来越便宜),于是基于归并和插入排序的TimSort就诞生了,并且被用作Java和Python的内置排序算法。
阅读全文 »

排序算法在计算机科学入门课程中很普遍,在学习排序算法的时候,涉及到大量的各种核心算法概念,例如大O表示法,分治法,堆和二叉树之类的数据结构,随机算法,最佳、最差和平均情况分析,时空权衡以及上限和下限,本文就介绍了十二种排序算法供大家学习。
阅读全文 »

对0和1的操作是计算机最底层的操作,所有的程序不管用什么语言写的,都要转化成机器能够读懂的语言也就是二进制进行基本的运算,而这些基本的运算就是我们今天要讲到的位运算。因为硬件的支持,计算机在进行二进制计算的时候要比普通的十进制计算快的多,把普通的运算用位运算的方法实现能够极大提高程序性能,是一个重要的技能。
阅读全文 »